对二甲苯生产工艺技术
现在**美国环球油品公司(UOP)和法国Axens公司拥有整套且比较成熟的对二甲苯生产工艺技术,2011年我国拥有了自主知识产权的对二甲苯整套生产技术。其中UOP是的芳烃生产工艺技术供应商,截至2014年,UOP已经为100多套联合成套装置和700多套单独芳烃生产工艺装置发布了许可。
甲苯歧化及烷基转移工艺技术
甲苯歧化及烷基转移工艺实质上是芳烃之间的一种相互转化技术,即甲苯与C9芳烃在分子筛催化剂作用下选择性转化成苯和二甲苯。该反应主要包括:甲苯歧化反应和烷基转移反应。甲苯歧化反应一般是指2个甲苯分子经过歧化反应生成1个苯分子和1个二甲苯分子。烷基转移反应一般是指1个甲苯分子与1个**苯分子在催化剂作用下,生成2个二甲苯分子。
当前,已工业化的甲苯歧化及烷基转移工艺主要有Arco/IFP公司的Xylene-Plus 工艺,美国UOP公司与日本 TORAY公司联合研发了Tatoray工艺,Mobil公司开发的MSTDP工艺。
传统对二甲苯分离技术
对二甲苯分离技术从上个世纪70年始工业应用, 其应用为广泛的为吸附分离法,并在近40年的应用过程不断改进。生产装置主要包含歧化、异构化、二甲苯精馏和吸附分离等四个单元,其中吸附分离单元为核心单元。吸附单元是通过吸附-解吸过程,将对二甲苯与其他三种同分异构体分离出来,得到对二甲苯产品。传统工艺中该技术均采用双塔24床层模拟移动床,用对二乙基苯为解析剂。在保证单程高达97%的回收率和99.8%高纯产品的同时,具有明显缺点:(1)对进入吸附分离系统的杂质含量要求较高, 一般要求进料中C9+芳烃的含量不**过500mg/kg;(2)燃料消耗大,能耗高,伴随着大量的低温热需要回收利用;(3)受制于吸附剂性能和设备制造水平,单套装置处理规模相对较小。
在职业.3µg/(cm3·min))被吸收,二甲苯蒸气的经皮吸收与直接接触液体相比是微不足道的。二甲苯的残留和蓄积并不严重,上面我们已经说过进入人体的二甲苯,可以在人体的NADP(转酶II)和NAD(转酶I)存在下生成甲基苯甲酸,然后与甘氨酸结合形成甲基马尿酸在18小时内几乎全部排出体外。即使是吸入后残留在肺部的3%-6%的二甲苯,也在接触后的3小时内(半衰期为0.5~1小时)全部被呼出体外。评价接触二甲苯的残留试验,主要是测定尿内甲基马尿酸的含量,也有人建议测定呼出气体中或血液中二甲苯的含量,但后者的结果往往并不准确。由于甲基马尿酸并不**存在于尿中,又由于它几乎是全部滞留的二甲苯代谢物,因而测定它的存在是的二甲苯接触试验的确证。二甲苯能相当持久地存在于饮水中。自来水中二甲苯的浓度为5mg/L时,其气味强度相当于5级,二甲苯的特有气味则要过7至8天才能消失;气味强度为3级时则需4至5天。河水中二甲苯的气味保持的时间较短,这与起始浓度的高低有关,一般可保留3至5天。
分离技术
受沸点影响,对二甲苯很难采用精馏方法从其同分异构体中分离出来,目前世界上实现对二甲苯分离的主流技术有两种,分别为吸附分离和结晶分离。
BP结晶分离技术
近年来,以结晶器和离心机设备设计制造水平的发展为依托,BP公司采用一次结晶加两段重浆化工艺代替了两次结晶加两次熔融的传统工艺。 通过结晶-分离-一次重浆化-分离-二次重浆化-分离过程,实现对二甲苯分离。 该技术主要特点有:
(1) 对进入结晶系统的杂质容忍度较高,C9及以上芳烃含量可控制在不大于2.0(m)%,可有效降低二甲苯分馏单元的能耗和设备投资。
(2) 受多元共熔体的平衡限制,对于混合进料中对二甲苯浓度在22%左右时,其单程回收率约65%。其配套异构化单元规模相对较大。
(3) 其核心设备结晶器和离心分离机采用多台并联方式,可实现单套装置较大的处理规模。
(4) 工艺流程相对较为简单,但转动设备相对较多,用能结构中电耗比例较高。
(5) 采用低温结晶分离,相对安全性较高,事故排放量较小。
(6) 结晶单元设备可采用立体布置,减小占地面积。